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Abstract

A unified shallow water model based on the Flux Form Semi-Lagrangian (FFSL)
scheme is described. This is a unified model in the sense that it can be used as a global
model, a regional model, or a fully interactive multiply nested global-regional model. A
novel two-grid system: the “inverse Z grid”, which has the advantage of Randall’s Z grid
but without the need to invert vorticity and divergence, is developed. The nesting capability
of the model is first tested by verifying the predictions from the nested model against that
from the global model at the same fine grid resolution, The evolution of Typhoon-like
vortex is simulated using the fully interactive  triply nested global-regional mode of the
unified model. Owing to the upwind-biased nature of the FESL scheme and the application
of the monotonicity constraint, no explicit damping mechanism of any kind is needed, even
when the moedel in run in the multiply nested global-regional mode. The vortex can enter
and leave the boundary of the local fine grid domain without generating noises cornmonly
found in nested grid models.

1. Introduction

Arakawa-type finite difference method (Arakawa and Lamb 1981) and the spectral
method (e.g., Bourke 1972), at least in the 80’s, are the two most dominant modeling
techniques for Numerical Weather Predictions (NWP) and climate simulations. As
computer power rapidly increases in the past decade, so is the demand for a higher level of
predictability. Deficiencies in the above two modeling methods are becoming more
apparent. Arakawa-type finite differencing methods suffer from the so-called “pole-Courant
number problem”, which not only limits the size of the largest time step but also introduces
computational noises near the poles, which is made worse by the existence of the so-called
“Hollingsworth-Killberg instability” (Hollingsworth et al. 1983). The spectral method
formally has no pole problem but its computational efficiency decreases rapidly as the
resolution increases (due to the “slow’ Legendre transform). Furthermore, it is difficult 1o
apply the speciral method to a limited area and/or using the domain decomposition
technique on a massively parallel platform. These and other problems have motivated the
recent rapid development of the semi-implicit semi-Lagrangian method (see Staniforth and
Coté 1991 for a review),

Traditional semi-Lagrangian method (SLM) has several deficiencies as well. The most
notable and perhaps most serious problem is that mass is not conserved due to the fact that
the non-conservative advective form of the equations are solved. The non-conservation
problem can lead to serious systematic biases in long term integrations. Another problem,
which is not unique to the SLM¥ , is that it is not free of the numerical over- and under-
shoots (i.e., Gibbs oscillations). An obvious consequence of this problem is that the
predicted mixing ratios of water substances can become unphysically negative. Although
less obvious, similar over- and under-shoots also exist in the predicted temperature and the
wind fields. Moreover, problems in the model that are induced by the Gibbs oscillations
can be mistakenly identified as deficiencies in the model’s physics. This type of numerical
problem often leads to incorrect compensating tuning of the true physics. In addition, a
very strong and ad hoc numerical diffusion is often required near the lateral boundaries of a
nested grid regional model.

The numerical method adopted here is based on the recently developed multi-dimensional
Flux-form semi-Lagrangian (FFSL) transport scheme of Lin and Rood (19954, LR-a
hereafter). The strictly 1-D Piecewise Parabolic Method (PPM, Colella and Woodward
1984) is used as the basic building block of the mass-conserving multi-dimensional FFSL
scheme. The monotonicity constraine used in the PPM can be regarded as a built-in subgrid
scale parameterization in the sense that no explicit numerical diffusion is needed to obtain a
noise free high-resolution solution. In the original PPM formulation, a complicated
Riemann solver is required when the full hydrodynamic equation set is solved. The

* Williamson and Rasch (1989) developed 2-I shape-preserving semi-Lagrangian interpolation schemes that are
free of the under- and over-shoots problem, at the expense of somewhat larger computational damping.
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Riemann solver is devised principally for the transonic or supersonic flows involving
shock waves, which are the rule rather than the exception in aerodynamic or astrophysical
applications (e.g.. Woodward and Colella 1984). Geophysical flows, on the other hand,
are dominated by smoothly varying large-scale waves, which is particularly true from a
global perspective (e.g., in climate simulations or medium range weather forecasts). Qur
objective here is to apply the FFSL scheme, a multi-dimensional transport scheme initially
developed for passive scalars, to model geophysical flows in an accurate and
computationally efficient manner. To this end, we shall apply a more conventional
approach for compating the pressure gradient terms and the “time-averaged advective
winds” (see Lin and Rood 1995b for details, LR-b hereafter) in lieu of solving a very
difficuit and time consuming multidimensional Riemann problem. As to be described in the
next section, for the shallow water system of equations, the FFSL transport scheme will be
applied directly to the conservation law for the “mass” and indirectly to the conservation
law for the “absolute vorticity” using the “inverse Z grid” (a combination of the C and the D
grid, see Fig. 1), which has the advantage of the Z grid (Randall 1994) but without the
need to invert vorticity and divergence, a tremendous computational advantage.

To facilitate the construction of a flexible unified model that can be used as a global
model, a regional model, or a nested global-regional model, the discretization of the
governing equations should be strictly local. A semi-implicit treatment of the gravity
waves, which requires the solution of an elliptic equation, should therefore be avoided. The
- economical explicit “forward-backward” scheme described by Mesinger and Arakawa
(1976) for integrating the pressure gradient terms is stable and second order accurate when
combined with a forward-in-time advection scheme. The FFSL scheme, a forward-in-time
local discretization technique, is perfectly suited for this purpose. A very important
advantage of the unified model approach is that full compatibility between the time
dependent iateral boundary conditions (provided by a coarse grid model) and the fine grid
regional model can be easily achieved, This is demonstrated by the numerical example
described in section 4. We will first review the 2-D FFSL scheme in section 2, The
discretization of the shallow water equations using the spherical coordinates is described in
section 3. The specification of the boundary conditions, the nesting strategy, and a
numerical example are given in section 4. Concluding remarks and related future works are
given in section 5.

2. The 2-D FFSL scheme —- a brief review

Central to the algorithm to be described in the next section is the FFSL transport
scheme developed in LR-a. For brevity, only the fundamental aspect of the 2-D FFSL
scheme will be given here. The conservation law for a density-like field 0 (in the context
of the shallow water equations, @ may represent the depth of the fluid h or the absolute
vorticity Q) is

aa_tQ + V.(VQ) = 0 2.0

where V = (u, v) is the horizontal vector velocity. To model Eq. 2.1 using 1-D finite-
volume schemes (such as the PPM), we define F and G as the 1-D flux-form operators for
updating @ for one time step in the longitudinal (A) and latitudinal (8) direction,
respectively. Adopting the following standard notations for the difference and average
operations,

80 = a0+5D - q@-5D 2.2)

7% = Mow e+ - 29 2.3)
F and G can be written as follows.

FWase) = o s [xatace ] @4

G, a6 0 = -t g [cosor o ano ] (2.5)

where A is the radius of the earth, X and ¥, the “time-averaged fluxes™ of @ in the
longitudinal and latitudinal direction, respectively, are defined analytically as

AL
X@hase™ = 315 qu di ' (2.6)
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t+At
YooagQ™ = ﬁ va dt 2.7

* *
As illustrated in Fig. 1, the advective winds (u, v ) and the Q field (h or £2) are staggered
as in the C-grid. For convenience, we will drop, for now, the dependence of the F and G
* ok
operators on (u , v ) and At. To derive the multidimensional FFSL scheme, the first step

is to remove directional biases by averaging two anti-symmetric operator-split schemes.
The resulting directional bias free scheme is

o™ =o"+rio"+ o™ + 6™+ Lr@™1 e

Scheme (2.8) still suffers from the “deformational error” (Smolarkiewicz 1982). An
immediate consequence of this error is that a constant Q field will not remain constant when
the flow is non-divergent. To remove this error, the second step is to replace F and G
inside the square brackets in (2.8), the contributions from the cross-stream directions, with
their advective-forn: counter part fand g, respectively, to obtain the following form of the
2-D FFSL scheme.

0™ =0 +F10 s Lowy a0 160"+ Lrapa0B1 @9)

*  ® A * 2 8 .
where u, = u + Vo= v . The generalization of scheme 2.9 to large time step
(Courant number greater than one), which only involves slight modification to the 1-D
operators, is described in LR-a.

3. Discretization of the shallow water equations using the 2-D FFSL
scheme : ’

The mass conservation law for a shallow layer of “water” is

%h + V.(Vh) = 0 A

where h represents the depth of the fluid (the “mass™ in the shallow water system). The
vector invariant form of the momentum equation in the spherical coordinates can be written
concisely in component form as follows.

3, = D S 3

v = Qv - A cos® I [k + &) 3.2)

9. - 1 3

%Y = -Qu - A 38 fx + @], (3.3
where

D = @ +gh, the free surface geopotential (g is the gravitational acceleration),

<D s = the surface geopotential,

Q) = 2w s5in @ + VXV, the absolute vorticity,

® = angular velocity of the earth,

K = -IV-V. the kinetic energy.

2

A significant advantage of this form of the momentum equation is that the metric terms

which are singular at the poles, are absorbed into the definition of the relative vorticity’
which is \a:ell defined (i.c., non-singular) at the poles. A disadvantage of this form is tha;
fhe numerical form of the kinetic energy  needs to be carefully formulated to minimize
!?Sctl)?smency between Vic and the absolu(tlc vorticity fluxes. This inconsistency manifests
Iseif as a spurious momentum source and could result i i “Holli -
Kallberg instability” (Hollingsworth et al. 1983). ultin what is called “Hollingsworth
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The conservation law for the absolute vorticity can be readily obtained by taking curl of
the vector momentum equation [ie., V x (3.2, 3.3)]

Ba_tQ + V. (V) = 0. (3.4)

The divergence (n=V-V) equation is obtained by applying the divergence operator to the
same vector equation. If the vorticity-divergence form is chosen, a way must be found to
invert the pair (€2, 1) back to (u, v) each time step for the time integration to proceed. The
spectral ransform methad is ideally suited for this purpose because the inversion is nearly
trivial. Due to the continuous differentiability of the basis functions used in the spectral
ransform method, there is no theoretical advantage for the spectral method to choose the
vorticity-divergence form over the usual or the vector-invariant form of the mementum
equations described above. There is, however, advantage for choosing the vorticity-
divergence form when local discretization methods are used (The “Z grid”, Randall 1994).
Part of the advantage can be explained by the fact that the transport of the (absolute or
relative) vorticity, a higher order conservative scalar, is being modeled directly. To retain
this advantage while avoid inverting an elliptic equation, the idea introduced by Sadourny
(1975) and Arakawa and Lamb (1981, AL hereafter} can be applied to discretize the vector-
invariant form of the momentum equations. AL's method amounts to a subtle second order
center-in-space discretization to (3.1), (3.2), and (3.3). Some design constraints are
enforced to ensure that, after taking curl of the center differenced form of (3.2) and (3.3),
the resulting vorticity equation is reduced to the celebrated “Arakawa Jocobian” for vorticity
advection (Arakawa 1966) when the flow is non-divergent. The approach proposed here in
some ways mirrors that of AL’s, but in other ways is a complete opposite to their
approach. The fundamental departures from their approach are outlined next.

The first and the most important difference is in the transport scheme itself and in the
way absolute vorticity is transported in a more general divergent flow. AL’s method is a
center-differenced scheme and therefore it is possible to conserve both the total energy and
potential enstrophy, in the point-wise sense. A subgrid scale mixing parameterization is
generally required for realistic flows. In our approach, we seek to build the subgrid mixing
process into the grid-scale transport process by using a physically motivated upsiream-
biased monotonicity-preserving finite-volume scheme — the multidimensional FFSL
scheme developed in LR-a. It is applied explicitly to the transport of the fluid depth h and
implicitly to the absolute vorticity €. The discretized h and Q are considered as cell-
averaged values, not point-wise values. Because the implied subgrid distribution is forced
to be monotonic, no additional damping (subgrid scale mixing) mechanism is needed. The
same scheme is used for transporting h and €, regardless of the divergence of the flow.
Functional relations between h and Q can therefore be better preserved. In AL's approach,
the equation for the fluid depth (Eq. 3.1) is center differenced in a straightforward manner
while (3.2) and (3.3) are center differenced, in a more sophisticated way, to achieve the
goal of vorticity transport by the Arakawa Jacobian for nondivergent flow. Therefore, the
transport scheme for h and Q in AL’s approach will be, in general, different. As a
consequence, initial functional relationship between these two variables will be lost during

the course of time integration. It is our view that the lost of the functional relation will have
some negative impacts on the predictability of the flow.

To achieve the goal of transporting h and Q in exactly the same manner, a basic
requirement is that they be defined at the same point. Since our prognostic variables are h
and (u, v), instead of h and (£2, 1), the D-grid amrangement (see Fig. 1) is the best choice.
It is known that any grid, other than the C grid or the Z grid (Randall 1994), generates two-
grid-interval g-rawty wave noises. We avoided this problem by computmg the time-centered

advective winds (u v ) directly on the C grid. We shall consider (u v ) as given and

defer the discussion on how they are computed after the discretization of the governing
equations on the D grid are presented.

It is observed that if the first term on the right hand side (r.h.s.) of 3.2 and 3.3, at
the numerical level, is interpreted as the time-averaged latitudinal and longitudinal flux of
the absolute vorticity, respectively, a consistently discretized absolute vorticity equation can
be formed by taking curl, numerically, of these two discretized component equations,
tI_Jllr[cctly from Eq. (2.9), the discretized transport equation for h and Q are simply as

ollows.

n+1 n A

* 8 * ’
=h + FQ,Ath" ) + G(v,Ayh™) (3.5}

Q"o Q" s P ac®y 66 ac oty (3.6)

where
—8

—
B=0" Lty a0 ama OF = O™ Sru L aso™)
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- Itis stressed here that we will not actually update Q"o 0" 1. Instead, only the absolute

vorticity fluxes will be used for the discretization of the r.hs of Eq. 3.2 and 3.3. To
compiete the discretization of (3.2) and (3.3), the pressure gradient terms are discretized
with the explicit “forward-backward scheme” (Mesinger and Arakawa 1976), which is
stable and second order accurate if it is combined with a forward-in-time advection scheme
such as the one used here. The final form of the momentum equations are

[ —
A
n+l  n * e OM 1 * n+1
u = u +At|Y (v, A Q) %AAlcosele + @ 3.7
[ ___19
VoAl x @A 08 4 Alﬁ gk + o™ |

where x, the upstream-biased “kinetic energy” defined at the four comers of the cell (the
hollow circles in Fig. 1), is formulated as

K = %{X (0 Lanuh+y (v LAY (3.9)

The above form of ¥ minimizes the inconsistency in the momentum equation and thus
avoided the “Hollingsworth-Kallberg instability”. it is noted that (3.6) can be recovered by

taking “curl” of the two components, (3.7) and (3.8), of the vector momentum equation.
* *
The time-centered winds V' = (u , v ) on the C grid are computed by advancing the
advective winds at time level n on the C grid (obtained by spatial averaging) for a half time
step. For clarity, we describe next the complete cycle of the time marching,
Assuming the time integration starts from time-level n, before updating the prognostic
variables on the D grid for a fuil time step to time-level n+1, the time-centered advective

* K
winds (u, v ) on the C grid are computed (cf., 3.7 and 3.8) as follows,

*
h= 1"+ Fal 5092 + 66, & nM2, (3.10)
*_oon At foon At A2 1 *x *
L BRIy v S N 1l G
* At At 1 * ok *
where
1 At 1 At
M2 = e Lral Sl 2 ot a Lon At
A2 n 1., n At .n 0/2 n 1 n At .1
Q% = 0 + gfp 70 @)% = of + Jg0h 5k ab,
n_ a* n_ Ta®
ub = 1u N Vh = Vv N
n TB n %K
Yo = U » Vo = Voo
n_ whA o e
g = U - V3 = Vo
n . n
QC = 2wsinb +_vac’
Hed
and x , the upwind-biased kinetic energy defined at the mass point, is computed as
*x 1 At At
K = 5 [X (g 73 W) + ¥ (vD, 55 v';)] (3.13)
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* *
After (u, v ) are obtained, prognostic variables h"and (un, vn) are updated using Eq.
3.5,3.7, and 3.8.

* *
It is noted that the “divergence” of the advective winds (u, v ) and the “curl” of the

prognostic winds (u, vn), the relative vorticity, as well as the “mass™ are defined at the

same point. Therefore, as far as linear behavior of the system is concerned, this two-grid
(C and D) system is essentially the same as Randall’s Z grid. Due to the use of the two-step
procedure, there is no need to invert the vorticity and divergence, which is a great
computational advantage. This two-grid system can therefore be appropriately called the
“inverse Z grid”.

4. Simulation of a Typhoon-like vortex with the triply nested unified model

The algorithm developed in the previous section is local. Therefore, it can be easily
applied to a limited area model if appropriate boundary conditions are supplied. To
construct a global model, one simply extends the domain to the whole globe and uses the
periodic boundary conditions in the longitudinal direction. The “boundary conditions” at
the north and the south poles are more complicated. Relative vorticity at the poles is
computed by the Stokes theorem (see LR-b for details). Fluxes into and out of the polar
caps are computed the same way as described in Lin et al. (1994). For efficiency reason, 2
polar Fourier filter can be used in the global model to stabilize high frequency gravity
waves that are being unidirectionally resolved at high latitudes.

There are several feasible ways of nesting a fine grid (a limited area model) to a coarser
grid, which may or may not be global in extent. To conserve mass in the global grid when
there is two-way interaction, one would need to use, instead of the values of the prognostic
variables, fluxes (computed in the coarse grid) orthogonal to the boundaries of the fine grid
as the boundary conditions. Using fluxes for the specification of the boundary conditions is
made possible by the flux-form nature of our algorithm. However, this procedure is
difficult to implement if only one model code is to be maintained and used as a global
model, a regional model, or a nested global-regional model. For this practical reason, we
chose instead to use linear interpolation to obtain the necessary values near the boundaries
of the fine grid from the values computed in the coarse grid. If two-way interactions are
desired, results from the fine grid are appropriately averaged (to the coarse grid resolution)
to replace those coarse grid values in the overlap region, In the unified model code, all the
necessary boundary conditions are obtained by calling a single subroutine that performs the
linear interpolation (from a coarse grid w a fine grid). Another subroutine performs the
averaging process (from a fine grid to a coarse grid). The core of the unified model code
can therefore be used for all types of grid.

The unified model has been extensively tested using various initial conditions with or
without bottom topography, in the “global mode” or in the stand alone “local mode”. To
verify the nesting capability of the model, several cases proposed by Williamson et al.
(1992) were tested using a triply nested unified model. For brevity, these tests will not be
shown here. To demonstrate the wtility of the unified model approach, we present here the
simulation of the propagation of 2 Typhoon-like vortex with the fully interactive triply
nested unified model. Three grids with increasing resolution (indicated as AAXAS in
degrees) were used, which are the global grid (1.250x19), the coarse local grid (0.6250 x
0.59), and the fine local grid (0.31259x0.259), The time step is 900, 450, and 225
seconds, respectively. The computational domains of the two local grids are shown in Fig.
2. The initial condition is a Rankine combined vortex centered at 130E and 15N (the black
“dot” east of the Philippines; see Fig. 2) with a 100 km radius and 2 maximum tangential
wind of 50m/s. Since there is no background mean flow or explicit damping mechanism,
the vortex maintains a stable circular smucture to DAY-14. The direction of the propagation
is approximately north-west. Fig. 3 shows the height fields at DAY-5 and DAY-10/in the
three grids (only a portion of the global grid is shown). The center of the vortex 1s over the
northern tip of Taiwan at DAY-5, and at DAY-10 the center has propagated to the western
boundary of the fine local grid. There is no noises or any peculiar behavior generated by
the nesting procedure, which should be attributed to the use of the monotonicity-preserving
upstream-biased FFSL scheme.

5. Concluding remarks and future works

We are curtently studying the dynamical mechanisms invelved in the merger, split, and
counter rotating phenomenon (the so-called “Fujiwhara effect”) of tropical cyclones using
the triply nested unified shallow water model. More detailed cyclone track studies are also
planned.
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The algorithm described in this paper for the discretization of the shallow water
equations can be easily exiended to 3-D hydrostatic primitive equations. A working
“dynamical core” for the Goddard Earth Observing System General Circulation Model
(GEOS-GCM) using a hybrid o-P vertical coordinate system has already been developed
and currently under testing. Finally, it should also be noted that the algorithm described
here is self advancing (i.e., no information from the previous time step is needed).
Therefore, the core memory usage is, at most, half of that required by the two-time-level
semi-Lagrangian models or Eulerian models based on the leap-frog time differencing
scheme. The saving in memory can be used, for example, to increase the domain width of
the regional model. Combined with the proven higher accuracy of the FFSL scheme,
significant improvement over conventional models can be expected.
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Fig. 1 Schemotics of the "inverse Z grid”, The time-centered advective winds
(the hollow arrows) are staggered cs in the C grid whereas the prognostic winds
{the solid orrows) are staggered os in the D grid.
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Fig. 2 The triply nested grids. The "bleck dot" is the initial height contours
{contour interval=25 m). The meridional resoluticns for the global grid, the
coarse lacai grid, and the fine local grid cre opproximately 111 km, 55.6 km,
ond 27.8 km, respectively.
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DAY-3: global grid DAY—10: gicbal grid
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DAY-5: local course grid
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DAY-5: loeal fine grid

Fig. 3 Height field contours at DAY-5 (contour interval=20m) and DAY-10 (contour interval=15m)
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